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Abstract

Bent-solenoid channels are being considered to gener-
ate dispersions desired for emittance exchange between the
transverse and longitudinal motions of a muon beam in a
longitudinal ionization cooling channel. Correct field ex-
pansion around the reference orbit is important for reliable
particle tracking simulation as well as beam dynamics anal-
ysis. This paper reviews the magnetic field expansion in a
bent-solenoid focusing channel. In particular, ready-to-use
formulas for the magnetic field and its potentials are given.

1 INTRODUCTION

Bent-solenoid channels are being studied for longitu-
dinal ionization cooling of a muon beam [1], in which
strong longitudinal magnetic field from the solenoid pro-
vides transverse focusing and superimposed transverse
dipole field provides dispersions desired for emittance ex-
change. In addition, quadrupole field may be superimposed
to achieve symmetric focusing for example. To study the
beam dynamics in a bent-solenoid channel, magnetic field
expansion around the reference orbit is needed. Although
general formalism for such expansion is well-established,
reliable ready-to-use result for bent solenoid seems not
available. Furthermore, many errors, from typos to tech-
nical mistakes, exist in the literature on field expansion as
well as in computer code currently in use. In this paper,
following the approach presented in ref. [2], we briefly
review the derivation of field expansion especially for the
bent-solenoid system and presentready-to-useexpressions
for the magnetic field and the corresponding scaler and vec-
tor potentials up to the octupole order.

2 REVIEW OF GENERAL METHOD

The static magnetic fieldB in a beam pipe must satisfy
the source-free Maxwell equations in vacuum∇ · B = 0
and∇×B = 0. It is well known that both a scaler potential
φ and a vector potentialA can be defined such thatB =
∇×A andB = −∇φ. To study particle transport in a beam
line, it is necessary to have a general field expression that
depends onfreeparameters yet satisfies Maxwell equations
in the neighborhood of a given design orbit.

2.1 Frenet-Serret coordinate system

To describe a particle’s motion around a design orbit
Frenet-Serret coordinate system is commonly used. Its
base vectors are defined by the unit vectors(es, ex, ey)
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of the moving trihedron that can be determined from the
Frenet formulas [3]

e′s = −κ ex , e′x = κ es + τ ey , e′y = −τ ex , (1)

where the prime indicates derivative with respect to the
path lengths along the reference orbit,κ(s) andτ(s) are
the local curvature and torsion of the reference orbit. We
consider the most common case that the reference orbit is
a well behaved plane (torsion free) curve, i.e.,τ(s) = 0.

Using Frenet-Serret coordinate system, a particle’s posi-
tion r(s) can be written as

r(s) = r0(s) + xex + yey, (2)

wherer0(s) is the reference orbit,x andy are the trans-
verse displacements from it. A vector fieldA(x, y, s) can
be decomposed as1

A = Axex + Ayey + Ases. (3)

Vector analysis using the Frenet-Serret coordinates can be
carried out via
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where the so-called scale factorh = 1 + κ(s)x.

2.2 Scaler potential and recursion formula

Expanding the magnetic field and its potentials as a se-
ries of x andy, a general magnetic field can be specified
by the expansion coefficients as functions ofs. Because
the field must satisfy the Maxwell equations, those expan-
sion coefficients are interrelated. An important exercise is
to identify those coefficients that can be chosen freely and
express the field as a function of them.

It is convenient to start with the scaler potential
φ(x, y, s). Using Taylor series,φ can be expanded as

φ(x, y, s) = −
∞∑

n=0

n∑
m=0

an−m,m(s)
xn−m

(n−m)!
ym

m!
. (7)

1Be careful that, in the literature,As may represent the canonical com-
ponenthA · es instead ofA · es.



The Maxwell equations are satisfied if and only if the scaler
potential satisfies the Laplace equation∇2φ = 0. Working
out∇2φ using Eqs. (7, 4, 5) and expanding the result into
a Taylor series ofx andy, then requiring the coefficients
to be zero give the recursive formula that the coefficient
functions must satisfy

an,m+2 = −an+2,m −
n∑

p=0

(−κ)p n !
(n−p)!

[
κ an−p+1,m

+ (p+1)a′′n−p,m −
(
p+ 2

2

)
(n− p)κ′a′n−p−1,m

]
. (8)

Although rather obscure, this formula clearly shows that,
corresponding to the even and the oddm’s, there are two
independent sets of recursion relations foran,m’s. Since
the second indexm specifies the power of y in the po-
tential expansion, the odd (even) set of coefficients defines
the normal (skew) field component whose potential is anti-
symmetric (symmetric) to the orbit plane. Furthermore,
only an,0(s) andan,1(s) can be independently chosen. All
higher-order (inm) coefficients can be derived from them.
Using these independent coefficients and the recursion for-
mula, though tedious, it is straightforward to express the
scaler potential and the magnetic field as functions of these
free parameters.

2.3 Independent magnetic field components

The transverse components of the field on the reference
plane and the longitudinal component on the reference or-
bit are determined by the independent coefficientsan,0 and
an,1 via

skew : Bx(x, 0, s) =
∞∑

n=1

an,0(s)
xn−1

(n− 1)!
, (9)

normal : By(x, 0, s) =
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n=0

an,1(s)
xn

n!
, (10)

longitudinal : Bs(0, 0, s) = a′0,0(s) . (11)

Vice verse, these three field components completely de-
termine the independent coefficients and the 3D magnetic
field. Furthermore, these field components can be freely
chosen.

In terms of standard (US convention) multipole coeffi-
cientsan andbn defined by [4]

By + iBx =
∞∑

n=0

(bn + ian)(x + iy)n, (12)

the independent coefficients of the transverse field are
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∂nBy

∂xn
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= (n− 1)! an−1 , (14)

a′0,0 ≡ bs (15)

for the normal, skew, and longitudinal components respec-
tively. Note that we used the absolute multipole strengths
instead of normalizing them by the dipole strengthB0. Up
to the octupole order, the independent coefficient functions
arebs(s) for the solenoid component,b0(s) for the dipole,
b1(s) anda1(s) for the normal and skew quadrupoles,b2(s)
anda2(s) for the sextupoles, andb3(s) anda3(s) for the
octupoles.

2.4 Vector potential

The vector potentialA is important in Hamiltonian treat-
ment of beam dynamics. To obtain a unique expression of
the vector potential from the scaler potentialφ, we choose
the gauge

xAx + yAy = 0 (16)

instead of the usual Coulomb gauge∇·A = 0. Using this
gauge, we can introduce two new functionsF (x, y, s) and
G(x, y, s) to express the three components of the vector
potential as

Ax = −yF, Ay = xF, As =
G

h
. (17)

Then the magnetic fieldB = ∇×A becomes
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The equations forG andF are decoupled and can be solved
separately via Euler’s theorem for homogenous forms. It is
easy to verify that their solutions can be written as
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s , (23)
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)
. (24)

Here the superscript(n) means thenth order component.
Using theF andG expressions and Eq. (17), the vector po-
tential can be worked out straightforwardly from the mag-
netic field expansion. Here we will not spell out the expres-
sions as functions ofan,m. (Note that the last expression
for F in ref. [2] is incorrect.)



3 READY-TO-USE FIELD EXPANSION

In the last section we outlined the procedure to obtain
the Taylor expansion of a magnetic field and its scaler and
vector potentials. Although straightforward in principle, it
is a rather tedious and fallible exercise to obtain the final
expansions, especially with all the dependent coefficients
removed. With the help of Mathematica, we did this exer-
cise for the bent-solenoid channels considered for the ion-
ization cooling of a muon beam. We report the ready-to-
use formulas that include all field components up to the
octupole order, except for the horizontal dipole compo-
nent a0(s) that makes the zeroth-order orbit non-planar
curve. If the zeroth-order orbit is chosen as reference,
κ(s) = qb0(s)/ps, whereq andps are the charge and lon-
gitudinal momentum. The bending radiusρ(s) = |1/κ|.
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